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transformation 
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Abstract. The Kustaanheimo-Stiefel and Levi-Civita transformations, used to regularise 
the three- and two-dimensional Kepler problem respectively, are generalised to the n- 
dimensional case. Explicit formulae are given for n = 2,3,5,  thus recovering in a more 
transparent way those given by Lambert and Kibler. 

1. Introduction 

The Hamiltonian vector field of the n-dimensional Kepler problem is not complete in 
the natural phase space, as collision orbits reach the singularity of the potential at 
finite times and with divergent velocity. The way of treating this pathology amounts 
to compactifying each cotangent space to the configuration manifold by adding the 
point at infinity. This is done by stereographic projection of the natural phase space 
(R" -{O}) x R" to T'S" := T*S" -{null section} [l-31. The Moser phase space T+S" 
obtained in this way turns out to be a co-adjoint orbit of the dynamical group 
SO(2, n + 1 )  and the Hamiltonian flow is now regular and complete. A second way of 
regularising the problem entails a direct linearisation of the equations of motion. This 
dates back to Levi-CivitP [4] for n = 2 and to Kustaanheimo and Stiefel [5] for n = 3. 

In [6] a link between these two approaches is given via Clifford algebras and the 
Kustaanheimo-Stiefel transformation ( KST) is generalised to n dimensions. In [7] the 
same generalisation is given but only for n = 5 ;  this is achieved via the (eight- 
dimensional) Cayley-Dickson algebra, so obtaining a quadratic non-bijective mapping 
Rs-RS that generalises the analogous R4-R3 of the KST. The link with the Kepler 
problem is recovered U posteriori in a pure computational way, showing that, as in the 
three-dimensional case, the KST transforms the motion equation of an eight-dimensional 
isotropic oscillator in that of the five-dimensional Kepler problem. 

The aim of this paper is to show that the mapping found in [7] is a particular case 
of the general treatment given in [6], as is seen by making explicit the (somewhat 
abstract) statements of this last reference. Besides, in this way we reach a good 
understanding of the relation with the Kepler problem, which does not surprise us 
any longer. 

In § 2 we review the contents of [ 6 ]  and complete them with more explicit coordinate- 
dependent formulae. In § 3 we find explicitly the generalised KST for n = 5 and show 
how the three cases considered in [6] (i.e. n = 2,3,5) may be recovered from the general 
case: they differ only in that the real R, the complex C and the quaternionic H numbers 
are to be employed. We stress finally that in the present approach one can naturally 
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obtain the complete KST, i.e. the usual KST plus its cotangent lifting, thus generalising 
the formulae given by Kummer [2]. 

2. Regularisation of the Kepler problem 

Let i :  T+S" H S O * ( ~ ,  n + 1) be the immersion of the Moser phase space in the dual of 
the Lie algebra of SO(2, n + l ) ,  and let 6 = i (  TfS") be the corresponding co-adjoint 
orbit. Since so(2, n + 1) = spin(2, n + l) ,  we can identify 0 with a co-adjoint orbit of 
the double covering Spin(2, n + 1) of the dynamical group. 

To get an explicit parametrisation of this orbit, we first consider the following. 

Proposition 1. The Lie algebra spin(2, n + 1) is a subalgebra of su(N, N ) ,  with N = 
2[n/21. 

For the proof see [6]. Here we give explicitly a basis of spin*(2, n + 1) through matrices 
that belong to su*(N, N) t .  To this end, consider the n-dimensional Clifford algebra: 
its basis is generated by the N x N matrices Eh, h = 1, . . . , n, that satisfy 

These matrices always exist and can be easily constructed [8]. It is now a simple 
matter of calculation to verify that the following matrices: 

are a basis of spin*(2, n + 1). Here J P y  are the generators of the Lorentz subgroup 
SO(1, n) ,  P, and C,  of the translations and conformal translations and D of the 
dilations. If A E spin*(2, n + 1) and 

(2.3) 

one verifies that A t % +  '%A = 0 and Tr A = 0. Thus A E su*( N, N ) .  
To parametrise the orbit 0 c spin*(2, n + 1) we only need to fix one of its points 

Qe. By identifying spin*(2, n + 1) with the Lie algebra of the conformal group of R'.", 
one can choose Qe to be a generator of a 'null translation' [3]; thus, for example, 

O O i l O  

Q e = ( O  0 0 0 0  '1 
0 0 0 0  

(2.4) 

t Being a simple group, we identify as usual the algebra with its dual by means of the trace form. They 
differ only by a sign in the compact part. 
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where each entry is a (N /2 )  x ( N / 2 )  matrix. The fundamental point is that we can 
take a 'square root' of the co-adjoint action of Spin(2, n + 1). The basic step is to 
notice that, if we define the 2 N  x N / 2  matrix 

we can write 

Qe = i+eJI: 8. 

Clearly any other 4: = +,U, for U E U( N/2),  will give the same Qe. One takes care of 
such an ambiguity by taking the quotient under this right action of U(N/2) .  Since 
8g-I = gt%, Vg  E Spin(2, n + l),  the co-adjoint action 

Qe * Q = gQeg-' (2.7) 

is induced by the left action A of Spin(2, n + 1) on 

+e - + = g+e. 

The orbit 

T = { + I + = g $ e  modU(N/2))  (2.9) 

is contained in the symplectic manifold V of the complex 2 N  x N / 2  matrices equipped 
with the natural symplectic form w = dO where 

@=$Tr (+ t8d+-d+ '8+) .  (2.10) 

If we give 3 the induced symplectic structure and 0 the Kirillov form, we have 
proposition 2. 

Proposition 2. The map J : .T- 0 given by + * J (  +) = i$+' 8 is an equivariant moment 
map, i.e. a symplectomorphism that makes the diagram 

I J  Ad' I J  
0-0 

commutative, where Ad*is the co-adjoint action of Spin(2, n + 1). 

For the proof see [6]. Let +=(it) where z, w are N x N / 2  matrices. The moment 
map J becomes 

(2.11) 

and we can decompose the subalgebra of translations as follows: 

ZZt  = Xol  + X J k .  (2.12) 
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Remark 1. Consider the orbit "Ire V given still by (2.9) but with gESU(N,  N ) .  
Obviously, owing to (2 .5) ,  we have that 

*+8* = 0. (2.13) 

V can be obtained from V through symplectic reduction. Consider in fact the symplec- 
tic action of U( N / 2 )  on V given by right multiplication and the corresponding moment 
map: 

j = i++&,/J O # * € . v .  (2.14) 

The procedure of the symplectic reduction gives the manifold j f ' (O)/U(N/2)  = V. In 
general 9 is strictly contained in "Ir and therefore this symplectic reduction does not 
give it. We shall see in Q 3 that for the three cases considered in [7], i.e. for n = 2 , 3 , 5 ,  
the symplectic reduction is, on the contrary, sufficient. 

Remark 2. Differentiating the left action A we obtain 

d$/ds = A +  A E spin(2, n + 1) .  (2.15) 

Choose A to be the generator of the SO(2) subgroup that appears as a factor in the 
maximal compact subgroup S 0 ( 2 ) 0 S O ( n  I- 1): it is the dual of :(Po- CO) and thus we 
obtain 

dz/ds = f w  dw/ds = - f ~  (2.16) 

i.e. the equations of motion of the isotropic oscillator. 
We are now in the position of giving a general definition of the Kustaanheimo-Stiefel 

map XY : 9 + T*( R" - (0)). Let T : T*( R" - (0)) H T+S" be the Moser regularising 
map: its inverse is given [ 13 by the extension of the stereographic projection followed 
by an interchanging between coordinates and momenta. Composing 7~ with i we obtain 
the moment map: T*(R" -{O})-s0*(2, n S 1 )  given explicitly [2,3] by 

Jhk = y k x h  - Y h X k  

JO k = xYk 

(2.17) 

where x = (E, The Hamiltonian of the SO(2) subgroup of remark 2 is given by 

K = fx(y2+ 1) (2.18) 

i.e. by the Hamiltonian of the geodesic flow on S". Putting 

x = q / K  Y=KP E = -1/2K2 (2.19) 

we obtain 

$ p 2 -  l / q  = E (2.20) 
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i.e. the Hamiltonian of the Kepler problem. (For a better understanding of this ‘trick’ 
see [3], where (2.19) is viewed as a canonical transformation in the enlarged phase 
space.) Let I be the symplectomorphism which makes the triangle in the diagram 

commutative. The map 

ylzf-’ := 1 0  7r 

achieves in any dimension the target of regularising the Kepler problem by transforming 
the equivalent equations of motion of the geodesic flow on S” into the form (2.16). 

3. The case n = 2,3,5 

Let us begin with n = 3, since in this case the above-defined Yl9’ is exactly the usual 
KST. We choose Z = U, where 

(3.1) 

are the well known Pauli matrices. Since N = 2, the relevant group is SU(2,2), that 
being the twofold covering of S0(2,4)  is isomorphic to spin(2,4). Thus Vis the twistor 
space and 5= Ir is the orbit of the null twistors modulo phase transformations. 
Parametrise z in I& = (ii.) as 

XI + iX, 
X3 + iX4 

z=&( ) X,ER.  (3.2) 

From (2.12) the usual KST follows: 

xg = x:+ x:+ x:+ xf 
XI =2(X,X,+X,X,) 

x2 = 2(X,X3 - XIX,) 

x3 = x:+ x: - x: - x:. 

(3.3) 

Thus X;=X:+X:+X:. 

For n = 2 choose the basis: Z, = U , ,  Z2 = u3, i.e. the one with real entries. The 
relevant group is still SU(2,2) but now spin(2,3) = Sp(4, R )  is a proper subgroup. The 
basis for spin*(2,3) is given by (2.2) and one easily verifies that, restricting z and w 
to be real, the image of the moment map J ( + )  given by (2.11) is just contained in 
spin*(2,3). The orbit 2’ is the same as in the preceding case, whereas the orbit .Yc 2’ 
is four dimensional. The symplectic reduction of remark 1 is empty, since the constraint 
(2.13) is identically satisfied, but we must divide out the Z2 subgroup of U(1). Para- 
metrise z as 

z = X, E R. 
x2 

(3.4) 
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From (2.12) the usual Levi-Civiti transformation follows: 
xo = x: + x: 
x, = 2x ,x2  
x2=x: -x : .  

Thus x;=x:+x:. 
For n = 5 choose the basis 

t=( -1u 0 i;) z.=(1 0 -1 0 )  4; i). 

(3.5) 

The relevant group is now SU(4,4) and Spin(2,6) = S 0 * ( 8 ,  R) is a proper subgroup. 
Let z and w still be 2 x 1 matrices but with quaternionic entries, i.e. of the type 

Thus one verifies that J ( + )  (where X t = X o l - i X - u )  is contained in spin*(2,6). 
Applying the symplectic reduction, + describes the orbit 7," under the action of SU(4,4) .  
Therefore J ( + ) ,  where + satisfies the constraint (2.13), describes the orbit 0 = T+S5.  
Let us verify the dimensions: $, with z and w generic, describes a sixteen-dimensional 
manifold; being +' 84 an imaginary quaternion, equation (2.13) gives a three- 
dimensional constraint; finally, we must divide out a unitary quaternion. Thus 0 is, 
as expected, ten dimensional. Parametrise z as 

X = Xol + iX- U X o €  R X E R3. (3.7) 

z = a (  X o + i u . X  ). 
Y,+iu-  Y (3.8) 

From (2.12) we obtain the generalised KST: 

x o = x ; + x 2 +  Y;+ Y 2  
x = 2 ( Y o x - x o Y + x x  Y) 

x 4 = x ; + x 2 -  Y;- Y 2  
x5 = 2( x, Yo + x * Y). 

(3.9) 

Thus x;=x2+x:+x:. 
Summing up, in all three cases we pose + = ( i k ) ,  where z and w are 2 x 1 matrices 

defined on R, C and H, respectively. Imposing the constraint +'a+ = 0 and dividing 
out Z2, U ( l )  and SU(2) we obtain that J ( + )  describes O =  T+S" as a co-adjoint orbit 
of Spin(2, n + 1): this is the link with the Kepler problem. Decomposing zzt on the 
basis of the generators of the n-dimensional Clifford algebra we obtain the generalised 
KST. As a matter of principle, all of this can be extended to generic n, and in fact this 
has been done in § 2; but from the computational point of view we meet a serious 
obstruction since Spin(2, n + 1) is not a classical group for n 3 6. 
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